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Abstract

A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented.
The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each ele-
ment. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroa-
coustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a
small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP
schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the
Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension
of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles.
Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from
a two-dimensional jet.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Prompted by the realization of the limitation of standard finite element methods, current developments in
numerical methods for wave propagation tend to move beyond the standard continuous polynomial interpo-
lation techniques. It has been recognized that for high frequencies, the pollution error in standard finite ele-
ment models can become large and as a consequence very fine meshes are required to obtained accurate
solutions [1]. This is due to the fact that the numerical error on the wavenumber (or equivalently on the phase
speed) is solely controlled by the number of nodes per wavelength. At high frequencies waves can propagate
over many wavelengths within the computational domain. A consequence is that the error on the phase is
allowed to build up significantly over long distances. This accumulation process results in large numerical
errors that can only be alleviated by the use of meshes with much higher resolution than that dictated by
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the standard practice of keeping the number of nodes per wavelength constant (8 or 10 nodes per wavelength
are common rules-of-thumb used with standard finite elements for Helmholtz problems).

Various avenues have been explored to remedy this shortcoming and one can distinguish between two,
more or less distinct, approaches.

On the one hand, spectral methods take advantage of the superior interpolation properties of various fam-
ily of functions compared to standard finite element shape functions. Fourier series and Tchebychev polyno-
mials are common examples of shape functions used in spectral methods. High-order polynomials can also be
used such as Lagrange and Hermite polynomials. Discontinuous Galerkin methods are commonly considered
as spectral methods since the solution is generally interpolated using high-order polynomials [2] although non-
polynomial bases have been recently considered for time-dependent problems [3]. A general overview of spec-
tral methods can be found in [4].

On the other hand, ‘physics-based’ methods offer a way to include more a priori information on the physics
of the problem into the numerical model. Whereas spectral methods focus on improving the mathematical
property of approximability of functional spaces, physics-based methods aim at including key physical proper-
ties of the exact solutions into the numerical models (such as the dispersion properties for wave propagation
problems or the discontinuous nature of the solutions for problems of crack propagation in elastic solids).
This is achieved by using local solutions of the problem at hand to devise the numerical discretization of
the global solution. One possibility is to use Green’s functions to interpolate the solution. For instance, Caru-
thers et al. devised a Green Function Discretization (GFD) scheme for Helmholtz problems [5,6]. More com-
mon is the use of plane waves to interpolate the solution. With the partition of unity method (PUM)
developed by Babuška and Melenk, the standard finite element shape functions are multiplied by a set of plane
waves, thus preserving the conformity of the numerical model [7–9]. With the discontinuous enrichment
method (DEM), the standard continuous shape functions are complemented with a set of plane waves in each
element [10,11]. These additional shape functions being discontinuous across element boundaries, continuity is
enforced by means of Lagrange multipliers. When the continuous shape functions are removed, the DEM
reduces to a discontinuous Galerkin method with Lagrange multipliers [12,13]. Another physics-based numer-
ical method is the ultra-weak variational formulation (UWVF) whereby the solution is described in each ele-
ment by a set of plane waves [14–21]. Continuity between elements is weakly imposed using continuity
conditions originating from domain decomposition methods. Monk and Wang followed a similar approach
to the UWVF but used a least-square formulation to impose continuity between elements [22]. Capdeville
has recently developed a family of finite difference schemes by means of a local plane wave reconstruction
of the solution in order to adapt the upstream direction of the finite difference stencils [23,24]. Compared
to standard finite element methods, all the physics-based methods cited above yield significant improvements
in terms of accuracy for a fixed number of degrees of freedom. But this is at the expense of a deterioration of
the conditioning of the algebraic systems. In some cases, the poor conditioning of the methods can rule out the
use of iterative solvers.

The present paper aims at continuing the development of physics-based methods by formulating a general
discontinuous Galerkin methods in the frequency domain using plane waves instead of polynomials to inter-
polate the solution. Throughout this paper the emphasize is on the central role played by the dispersion rela-
tion of the continuous problem in the definition of the numerical discretization. The method is presented for a
general set of conservation equations. As an illustration it is applied to the linearized Euler equations in order
to solve aeroacoustic propagation problems, that is the propagation of linear disturbances on a given steady
flow.

In the context of aeroacoustic propagation, a large variety of computational methods have been studied,
but two approaches have been mainly used. The first is to solve the linear potential theory where the mean
flow and the acoustic perturbations are considered to be irrotational. This is generally done using standard
finite element methods either in the frequency or time domain. This method is relatively inexpensive and it
is possible to solve large-scale realistic problems. However, refraction of acoustic waves by rotational mean
flows (such as the mixing layer of a jet) cannot be described and this effect can be crucial for some industrial
applications (like noise radiation from turbofan exhausts). A more general approach is to use the linearized
Euler equations which also describe vorticity and entropy waves in addition to acoustic waves. This model
is generally solved in the time domain using high-order finite difference schemes (such as compact schemes
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[25] or dispersion-relation-preserving schemes [26]). The use of discontinuous Galerkin methods has also
become increasingly popular in the past few years. It should be noted that the use of physics-based numerical
methods for aeroacoustic simulations has been rather limited, with the exception of the GFD and PUM for
the linear potential theory [6,27–29].

The structure of this paper is as follows. Section 2 describes the formulation of the numerical method,
including the variational formulation, the discretization of the solution and the trial function, the numerical
flux and the boundary conditions. The similarities between the present numerical method and the UWVF are
discussed in Section 2.6. Details of the implementation are given in Section 3. Section 4 discusses the accuracy
and conditioning of the method by using a simple benchmark problem and compares these results with that of
a high-order finite difference scheme. A modification of the variational formulation is introduced in Section 5
to deal more efficiently with point sources and the resulting singular solutions. Finally an example of an aeroa-
coustic propagation problem with a non-uniform flow is solved in Section 6.

2. Formulation of the method

We consider two-dimensional, linear, hyperbolic problems described by a general system of conservation
equations written as follows:
ou

ot
þ o

ox
ðAuÞ þ o

oy
ðBuÞ ¼ s; ð1Þ
where u is the unknown vector representing the conserved quantities. The matrices A and B are square but not
necessarily symmetric. These matrices can also be non-uniform, i.e., they may vary with position. The right-
hand side s represents given external sources.

We consider time-harmonic problems with a e�ixt time dependence. The factor e�ixt is implied and omitted
in what follows. The conservation equations can then be written:
�ixuþ o

ox
ðAuÞ þ o

oy
ðBuÞ ¼ s: ð2Þ
Although the numerical methods will be described here in the general setting of the conservation Eq. (2), we
are primarily interested in solving the linearized Euler equations (LEE) which represent the propagation of
linear disturbances on a steady base flow. In the case of a homentropic flow (entropy is constant and uniform),
only the conservation of mass and momentum are required and the LEE can be formulated as follows:
u ¼
q0

ðquÞ0

ðqvÞ0

2
64

3
75; A ¼

0 1 0

c2
0 � u2

0 2u0 0

�u0v0 v0 u0

2
64

3
75; B ¼

0 0 1

�u0v0 v0 u0

c2
0 � v2

0 0 2v0

2
64

3
75; ð3Þ
where q0 denotes the mean density, v0 ¼ ðu0; v0ÞT the velocity and c0 the sound speed. The components of u

represent respectively the linear perturbations of density q 0 and momentum ðquÞ0, ðqvÞ0.

2.1. Variational formulation

We consider the variational formulation of the time-harmonic conservation Eq. (2) on a computational
domain X which is decomposed into a set of non-overlapping finite elements fXege¼1;...;Ne

. The solution u is
allowed to be discontinuous across the element boundaries. The variational statement is therefore written
as a sum over the finite elements:
X
e

Z
Xe

�ixvTuþ vT o

ox
ðAuÞ þ vT o

oy
ðBuÞdX ¼

X
e

Z
Xe

vTsdX; 8v;
where T denotes the Hermitian transpose (transpose and complex conjugate) and v is the trial function asso-
ciated to the unknown vector u. Derivatives can then be integrated by parts:
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X
e

Z
Xe

�ixvTu� ovT

ox
Au� ovT

oy
BudXþ

X
e

Z
oXe

vTAunx þ vTBunydC ¼
X

e

Z
Xe

vTsdX; 8v; ð4Þ
where oXe is the contour of the element Xe with an outward unit normal n ¼ ðnx; nyÞT. An internal edge Ce;e0 of
the finite element mesh is the interface between the elements Xe and Xe0 together with a unit normal pointing
outside Xe, see Fig. 1. One can write:
X
e

Z
Xe

�ixvTu� ovT

ox
Au� ovT

oy
BudXþ

Z
oX

vTFudCþ
X

e

X
e0<e

Z
Ce;e0

vTFu
� �

e
þ vTFu
� �

e0
dC

¼
X

e

Z
Xe

vTsdX; 8v: ð5Þ
In the second integral, oX is the external boundary of the computational domain. In the integral over the
edges Ce;e0 , the subscripts ð�Þe and ð�Þe0 indicate on which side of the edge the term is evaluated.

We have also introduced the flux matrix F ¼ Anx þ Bny . The vector Fu represents the normal flux of the
conserved quantities through the edge Ce;e0 . In (5), the flux is computed independently on both sides of the
edges. For the solution to satisfy the conservation Eq. (2), the normal flux should be conserved across each
edge, that is,
Feue ¼ �Fe0ue0 ¼ fe;e0 ðue; ue0 Þ; on Ce;e0 :
where fe;e0 is a numerical flux which can be defined as a linear function of the solutions ue and ue0 on both sides
of the edges. The integral over the internal edges is modified as follows:
X
e

X
e0<e

Z
Ce;e0

vTFu
� �

e
þ vTFu
� �

e0
dC ¼

X
e

X
e0<e

Z
Ce;e0

ðve � ve0 ÞTfe;e0 ðue; ue0 ÞdC:
The numerical flux used here will be described later on in Section 2.4.

2.2. The dispersion analysis and the plane wave basis

The key aspect of the present numerical method is to approximate the solution in each element as a sum of
plane waves. For this approximation to be efficient the plane waves are taken to be local solutions of the prob-
lem at hand. In the numerical model, the coefficients of the continuous equations are approximated by piece-
wise constant functions. That is the matrices A and B are considered constant in each element. Therefore, the
plane wave basis for each element is found by solving the homogeneous conservation Eq. (2) with constant
coefficients:
�ixuþ A
ou

ox
þ B

ou

oy
¼ 0: ð6Þ
To define the finite element basis, we seek plane wave solutions of (6) with amplitude r, direction h and
wavenumber k:
u ¼ r expðikx cos hþ iky sin hÞ: ð7Þ
Fig. 1. An edge Ce;e0 between the elements Xe and Xe0 .
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It is crucial to note that finding solutions of (6) and (7) is equivalent to a dispersion analysis of the equa-
tions at hand. Upon introducing the plane wave solution in Eq. (6), one obtains the following eigenvalue
problem:
Er ¼ kr; with E ¼ A cos hþ B sin h and k ¼ x
k
; ð8Þ
where the eigenvalue k is the phase speed of the plane wave and the amplitude vector r is the right eigenvector
of the matrix E. The corresponding characteristic equation is simply:
detðE� kIÞ ¼ 0 () detðk cos hAþ k sin hB� xIÞ ¼ 0;
where I denotes the identity matrix. For a given wave direction h one can obtain a set of eigenvalues kn asso-
ciated to eigenvectors rn. The properties of time-dependent problems of the form (1) are preferably described
in terms of their characteristics. For time-harmonic problems, the dispersion relation embodies the same infor-
mation since each pair ðkn; rnÞ corresponds to a characteristic of the time-dependent partial differential
equations.

When applied to the linearized Euler Eqs. (2) and (3) the dispersion analysis yields the following
eigenvalues:
k1 ¼ v0 � h; k2 ¼ v0 � h� c0; k3 ¼ v0 � hþ c0; ð9Þ

where h ¼ ðcos h; sin hÞT is the unit vector with direction h. The corresponding wavenumbers are
k1 ¼
x

v0 � h
; k2 ¼

x
v0 � h� c0

; k3 ¼
x

v0 � hþ c0

: ð10Þ
And the corresponding eigenvectors are:
r1 ¼
0

�c0 sin h

c0 cos h

2
64

3
75; r2 ¼

1

u0 � c0 cos h

v0 � c0 sin h

2
64

3
75; r3 ¼

1

u0 þ c0 cos h

v0 þ c0 sin h

2
64

3
75: ð11Þ
The first eigenvector corresponds to vorticity waves which produce a rotational velocity field but no per-
turbation of pressure. These vorticity waves are simply convected with the mean flow. The two other eigen-
vectors correspond to acoustic waves which produce a potential velocity field, the two acoustic waves
propagating in opposite directions. It should be emphasized that the acoustic and vortical waves are funda-
mentally different as the former are propagating in every direction while the latter is transported by the mean
flow.

In the case of a non-uniform mean flow vorticity and acoustic perturbations are fully coupled. It is not pos-
sible to derive a systematic distinction between the two types of waves. It is also not possible to carry out a
dispersion analysis. However, if one assumes a continuous mean flow, one can define around any point a suf-
ficiently small neighborhood where it is possible to approximate the mean flow as locally uniform (this is
essentially the assumption made by using piecewise constant matrices A and B). Therefore at any point the
hydrodynamic and acoustic fields can be represented locally as a sum of plane waves propagating in various
directions.

The eigenvalues kn and eigenvectors rn of the dispersion analysis (8) form a continuous family of solutions
for the parameter h. This means that any solution of Eq. (6) can be described as an infinite sum of plane waves
where all the directions h 2 ½0; 2p� contribute to represent the solution. However, for the purpose of devising a
numerical scheme (which is inevitably finite dimensional), one has to select a finite number of planes waves.

As a consequence, the solution is approximated locally in each element by a finite set of plane waves rep-
resenting the acoustic and vorticity perturbations:
uðxÞ ¼
XNe

w

n¼1

ae
nUe

n expðike
nh

e
n � xÞ; on Xe: ð12Þ
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The superscript e indicates that the parameters of the finite element basis can be chosen independently in
each element. This is obviously the case when the coefficient matrices A and B are non-uniform since in this
case the plane waves obtained with the dispersion analysis will differ from one element to the next. But some
other parameters, independent of the mean flow, can also be adjusted in each element, such as the number and
directions of plane waves.

The degrees of freedom of the finite element basis (12) are the wave amplitudes ae
n. We use Ne

a plane waves
for the acoustic part of the solution and N e

h waves for the hydrodynamic part. The total number of waves used
for the element e is N e

w ¼ Ne
a þ N e

h.
Following the results of the dispersion analysis for the LEE, the wavenumber ke

n and amplitudes Ue
n of the

acoustic plane waves are defined by
Fig. 2.
shaded
ke
n ¼

x
ve

0 � h
e
n þ ce

0

; Ue
n ¼

1

ue
0 þ ce

0 cos he
n

ve
0 þ ce

0 sin he
n

2
64

3
75; with 1 6 n 6 N e

a: ð13Þ
In a subsonic flow, the acoustic waves can propagate in any direction. Therefore, the N e
a acoustic plane

waves are evenly spaced in the interval ½0; 2p� as depicted in Fig. 2. The direction he
n are given by
he
n ¼ ðn� 1ÞDh; with Dh ¼ 2p

Ne
a

; with 1 6 n 6 N e
a: ð14Þ
The angular interval between two plane waves is Dh ¼ 2p=Ne
a. It is possible to consider more elaborate ways

to define the acoustic wave directions, for instance by taking the mean flow direction into account [28,29].
The wavenumbers ke

n and amplitudes Ue
n for the vorticity waves are
ke
n ¼

x
ve

0 � h
e
n

; Ue
n ¼

0

�ce
0 sin he

n

ce
0 cos he

n

2
64

3
75; with Ne

a þ 1 6 n 6 N e
w: ð15Þ
Directions of the plane waves. Top: acoustic waves with 4, 5 and 8 directions. Bottom: vorticity waves with 3 and 4 directions, the
area represents the upstream direction where no vorticity wave can exist.
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The vortical disturbances are convected downstream by the mean flow. So there is no vorticity wave propa-
gating upstream of the mean flow, see Fig. 2. There is also no vorticity wave in the direction perpendicular to
the mean flow since in this case v0 � h ¼ 0 and the wavenumber goes to infinity. Therefore the directions of the
hydrodynamic plane waves are evenly distributed on the interval h0 þ ð�p=2; p=2Þ where h0 is the direction of
the mean flow, see Fig. 2. This corresponds to
he
n ¼ h0 � p=2þ ðn� Ne

aÞDh; with Dh ¼ p
1þ N e

h

; with N e
a þ 1 6 n 6 N e

w: ð16Þ
Dispersion properties are central in describing wave propagation phenomena. The plane wave solutions of
the dispersion analysis are therefore particularly well-suited to build local approximations of the solutions
since they capture the physics of the problem and allow for the dispersion relation to be built into the numer-
ical approximations. It is worth noting two major differences between the plane wave discretization (12) and
standard polynomial approximations. First, the linear relations between the various unknowns are accounted
for in an exact manner (e.g. density and momentum for the linearized Euler equations). This is in contrast with
standard computational schemes where the unknowns are discretized independently. Secondly, the different
types of waves (acoustic and hydrodynamic) are described separately whereas standard methods discretize
the total solutions induced by all the waves.

2.3. The trial functions and the adjoint problem

We now turn to the discretization of the trial function v. An obvious and straightforward choice would be
to use the same plane wave basis (12) as for the solution itself. It proves however more interesting to use the
adjoint of Eq. (6) that was used to define the plane wave basis for u. It is straightforward to show that the
adjoint problem written for v is
ixv� AT ov

ox
� BT ov

oy
¼ 0: ð17Þ
The plane waves used to represent the trial function v are taken to be solutions of the adjoint problem. So
we perform a second dispersion analysis by seeking plane wave solutions with amplitude l, direction h and
wavenumber k:
v ¼ l expðikx cos hþ iky sin hÞ:

This yields the following adjoint eigenvalue problem:
ETl ¼ kl; with E ¼ A cos hþ B sin h; and k ¼ x
k
:

Thus lT corresponds to left eigenvectors of the matrix E with eigenvalue k. It is interesting to note that the
plane waves used for u and v are the right and left eigenvectors of the same matrix E. The right and left eigen-
vectors share the same eigenvalues k and satisfy the bi-orthogonality property, that is rn and lm are orthogonal
if km 6¼ kn. As for the unknown vector u, the trial function v is approximated locally by a finite sum of plane
waves:
vðxÞ ¼
XNe

w

m¼1

be
mVe

m expðike
mhe

m � xÞ; on Xe: ð18Þ
The degrees of freedom for v are the wave amplitudes be
m.

For the linearized Euler equations, the eigenvectors of the adjoint problem are:
l1 ¼
u0 sin h� v0 cos h

� sin h

cos h

2
64

3
75; l2 ¼

�c0 � v0 � h
cos h

sin h

2
64

3
75; l3 ¼

c0 � v0 � h
cos h

sin h

2
64

3
75;
and the eigenvalues are identical to that of the direct problem given in (9). The numbers of acoustic and vor-
ticity waves N e

a and Ne
h used in (18) are the same as for the plane wave basis of u. Although it is possible to use
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different set of wave directions for u and v, here the wave directions he
m are also given by (14) and (16). There-

fore, for acoustic waves we use:
ke
m ¼

x
ve

0 � h
e
m þ ce

0

; Ve
m ¼

ce
0 � ve

0 � h
e
m

cos he
m

sin he
m

2
64

3
75; with 1 6 m 6 Na:
And for the vorticity waves:
ke
m ¼

x
ve

0 � he
m

; Ve
m ¼

ue
0 sin he

m � ve
0 cos he

m

� sin he
m

cos he
m

2
64

3
75; with Na þ 1 6 m 6 Nw:
The benefit of using the adjoint problem is a significant simplification of the variational formulation (5).
The first term in the variational formulation can be rewritten as follows:
Z

Xe

�ixvTu� ovT

ox
Au� ovT

oy
BudX ¼

Z
Xe

ixv� AT ov

oy
� BT ov

oy

� �T

udX:
The term in brackets is precisely the adjoint equation. Hence when v is solution of the adjoint problem the
integral over the elements Xe vanishes. This represents a significant reduction of the computational complexity
of the method.

If one was to use (12) to describe both u and v, the scalar product vTu would not be consistent in terms of
physical units (in the case of the linearized Euler Eqs. (2) and (3), u and v would have components which are
either mass density or momentum density, thus vTu implies the sum of terms with different units). It can be
easily seen that another consequence of using the adjoint problem to define the plane wave basis for v is that
the variational formulation is now consistent in terms of physical units.
2.4. The numerical flux

The choice of a numerical flux is crucial to devise efficient discontinuous Galerkin methods. A large variety
of numerical fluxes have been proposed for various problems (advection, diffusion, etc), see for instance
[30,31]. In the present method, an upwind flux-vector splitting method is used, firstly because it is a simple
and well-known technique but more importantly because it is closely related with the dispersion analysis that
yields the plane wave basis.

Consider an edge Ce;e0 between the elements e and e0. The flux matrices F defined on both sides of the edge
can be written in terms of their eigenvalues and eigenvectors:
F ¼WKW�1; ð19Þ

where K is the diagonal matrix with the eigenvalues kn and W is the matrix of eigenvectors wn:
K ¼ diagðk1; k2; k3; . . .Þ; W ¼ w1 w2 w3 . . .½ �: ð20Þ
The eigenvalues kn represent the phase velocity of each eigensolution in the direction normal to the edge.
For a problem with non-uniform coefficients, the eigenvalues and eigenvectors are different on each side of the
edge. The diagonal matrix K is split in two matrices: K ¼ Kþ þ K� where Kþ contains only the positive eigen-
values while K� contains only the strictly negative eigenvalues:
K� ¼ diagðk�1 ; k
�
2 ; k

�
3 ; . . .Þ; kþi ¼

ki if ki P 0

0 if ki < 0

�
; k�i ¼

0 if ki P 0

ki if ki < 0

�
:

The numerical flux fðue; ue0 Þ can then be decomposed into two terms using upwinding:
fe;e0 ðue; ue0 Þ ¼ Fþe;e0ue þ F�e;e0ue0 :
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The first term represents the flux associated with the waves travelling from the element e to the element e 0.
Thus this term is computed using the solution from the element e. On the other hand, the second term repre-
sents the flux from e 0 to e and it is evaluated with the solution from the element e 0. The split flux matrices are
defined as follows:
Fþe;e0 ¼We;e0K
þ
e W�1

e;e0 ; and F�e;e0 ¼We;e0K
�
e0W

�1
e;e0 ; ð21Þ
where We;e0 is a matrix of eigenvectors where each column associated to a positive eigenvalue is the corre-
sponding eigenvector from the element e while for negative eigenvalues the corresponding column in We;e0

is the eigenvector calculated in the element e0. With uniform coefficients, the matrix We;e0 reduces to W.
The variational formulation (5) of the method is now written
X
e

X
e0<e

Z
Ce;e0

ðve � ve0 ÞT Fþe;e0ue þ F�e;e0ue0

� �
dCþ

Z
oX

vTFudC ¼
X

e

Z
Xe

vTsdX: ð22Þ
It is interesting to note that the flux-vector splitting method is closely related to the dispersion analysis (8)
which yields the plane wave basis. In fact the flux-splitting method involves essentially a dispersion analysis of
the equations in the direction normal to the edge. This is seen more clearly by writing the eigenvalue problem
for the flux matrix F as follows:
Fw ¼ kw; with F ¼ Anx þ Bny :
It is then obvious that the latter expression is a particular case of the eigenvalue problem of the dispersion
analysis (8) with the wave direction h corresponding to the normal n. Therefore, it should be emphasized that,
in the present numerical method, the dispersion relation of the continuous problem forms the basis for the numer-

ical approximation of the flux between elements and for the discretization of the solutions and the trial functions

within the elements.
In the case of the linearized Euler Eqs. (2) and (3) the eigenvalues of the flux matrix are the same as in Sec-

tions 2.2 and 2.3, except that the direction h is now replaced by n:
k1 ¼ v0 � n; k2 ¼ v0 � n� c0; k3 ¼ v0 � nþ c0: ð23Þ

The corresponding eigenvectors are:
w1 ¼
0

�c0ny

c0nx

2
64

3
75; w2 ¼

1

u0 � c0nx

v0 � c0ny

2
64

3
75; w3 ¼

1

u0 þ c0nx

v0 þ c0ny

2
64

3
75: ð24Þ
And we define the matrix of eigenvectors and its inverse:
W ¼
0 1 1

�c0ny u0 � c0nx u0 þ c0nx

c0nx v0 � c0ny v0 þ c0ny

2
64

3
75; W�1 ¼ 1

2c0

2ðu0ny � v0nxÞ �2ny 2nx

c0 þ v0 � n �nx �ny

c0 � v0 � n nx ny

2
64

3
75: ð25Þ
For problems with non-uniform coefficients, the split flux matrices F�e;e0 are built using Eqs. (21) together
with (23) and (24).
2.5. Boundary conditions

Various conditions can be applied on the boundary of the computational domain and one has to modify
accordingly the boundary integral on oX in (22). Two types of boundary conditions are considered here:
vibrating walls and ghost cells which can be used to enforce a given solution.
2.5.1. Vibrating wall

On a vibrating wall, the mean flow is tangential to the boundary so we have v0 � n ¼ 0. Furthermore the
normal velocity at the wall is given by v � n ¼ V on oX. To implement this boundary condition, it is convenient
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to use the flux-vector splitting by introducing the eigenvalues and eigenvectors of the flux matrix F, see (19).
The integrand in the boundary integral can be rewritten as follows:
vTFu ¼ vTWKW�1u ¼ vTW

k1q0n� v

k2ðq0c0 � q0v � nÞ=ð2c0Þ
k3ðq0c0 þ q0v � nÞ=ð2c0Þ

2
64

3
75: ð26Þ
Using Eq. (23) and the fact that v0 � n ¼ 0, we get k1 ¼ 0, k2 ¼ �c0 and k3 ¼ c0. After some algebra, the
integrand can be further simplified:
vTFu ¼ vT

0 0 0

c2
0nx 0 0

c2
0ny 0 0

2
64

3
75uþ vT

q0V

q0u0V

q0v0V

2
64

3
75:
The second term represents the forcing of the vibrating wall and contributes to the right-hand side in the
variational formulation (22).

2.5.2. Ghost cell

Ghost cells can be used on the boundary when the solution outside the computational domain is known
u = g(x). The basic idea behind the ghost cell is to treat the boundary as an internal edge and to use the numer-
ical flux to derive the forcing induced by the prescribed solution g outside the domain. An interesting property
is that the amplitudes of the outgoing waves are not imposed and thus the ghost cells can also be used as a
simple, first-order non-reflecting boundary condition. With the flux-vector splitting method, the integral over
the internal edges is given in (22) and can be rewritten as follows for the boundary of the computational
domain:
Z

oX
ðve � ve0 ÞTðFþue þ F�ue0 ÞdC;
where ue ¼ u represents the unknown solution inside the computational domain while ue0 ¼ g is the solution
outside. The trial function ve0 is zero since ue0 is known and the boundary integral reads
Z

oX
vTFudC ¼

Z
oX

vTFþudCþ
Z

oX
vTF�gdC: ð27Þ
The second term represent the forcing of the imposed solution g and contributes to the right-hand side in
the variational formulation (22).

2.6. Similarity with the ultra weak variational formulation

The Ultra Weak Variational Formulation was originally devised by Després and Cessenat [14–17] and it
has then been significantly developed by Huttunen et al. [18–20]. An advantage of the UWVF is that its imple-
mentation is fairly straightforward since the element matrix can be evaluated in closed form. This is in contrast
with other methods such as the Partition of Unity Methods where special numerical integration schemes are
required. Although the UWVF has emerged as a separate numerical method, it can be shown that it is in fact a
particular category of discontinuous Galerkin methods with plane waves. This can be illustrated by showing
that, with no flow, the present discontinuous Galerkin method for the linearized Euler equations reduces to
the UWVF for Helmholtz equation as presented in [18]. With u0 ¼ v0 ¼ 0 and c0 constant, the expressions
for the plane wave basis (12) and (18) are simplified as there is no vorticity waves. Using the numerical flux,
the first term in the variational formulation (22) reads
X
e

X
e0<e

Z
Ce;e0

vT
e Fþue þ vT

e F�ue0 � vT
e0F
þue � vT

e0F
�ue0

� �
dC:
The components of v are denoted v ¼ ðq; a; bÞT so that q, a and b are the trial function corresponding to q0,
ðquÞ0 and ðqvÞ0, respectively. Upon using expressions (20) and (25) one can derive
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vTFþu ¼ þ1

2
ðqþ c0anx þ c0bnyÞðc0q

0 þ ðquÞ0nx þ ðqvÞ0nyÞ;

vTF�u ¼ �1

2
ðq� c0anx � c0bnyÞðc0q

0 � ðquÞ0nx � ðqvÞ0nyÞ;
where the overbar denotes the complex conjugate. The following expressions can be deduced from the direct
and adjoint problems (6), (17):
ðquÞ0nx þ ðqvÞ0ny ¼
c2

0

ix
oq
on
; anx þ bny ¼

1

ix
oq
on
:

Then one can derive
vTFþu ¼ c3
0

2x2

ix
c0

qþ oq
on

� �
ix
c0

qþ oq
on

� �
; vTF�u ¼ �c3

0

2x2

ix
c0

q� oq
on

� �
ix
c0

q� oq
on

� �
: ð28Þ
And finally the first term in (22) becomes
c3
0

2x2

X
e

X
e0<e

Z
Ce;e0

ix
c0

qe þ
oqe

on

� �
ix
c0

qe þ
oqe

one

� �
� ix

c0

qe �
oqe

on

� �
ix
c0

qe0 �
oqe0

on

� �

� ix
c0

qe0 þ
oqe0

on

� �
ix
c0

qe þ
oqe

one

� �
þ ix

c0

qe0 �
oqe0

on

� �
ix
c0

qe0 �
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on

� �
dC:
This is equivalent to the Ultra Weak Variational Formulation given by Eq. (10) in Ref. [18] for the Helm-
holtz equation. The similarity between discontinuous Galerkin methods and ultra weak variational formula-
tion was also observed independently by Monk and Huttunen in the context of electromagnetism [21].

Therefore, the present discontinuous Galerkin method with plane waves can also be viewed as an extension
of the UWVF to the linearized Euler equations. The fact that UWVF methods can be formulated as discon-
tinuous Galerkin methods is quite useful as it allows to build upon the vast literature available on DGM
rather than developing independently the UWVF. In particular, the UWVF requires the formulation of con-
tinuity conditions to be weakly imposed at the interfaces between elements. These ad hoc conditions are
devised independently for each problem by inspection of the equations at hand. In the context of DGM,
the use of a numerical flux provides a general framework to derive these continuity conditions for any system
of conservation equations.

3. Implementation

To implement the numerical method, one has to evaluate the integrals in the variational formulation (5).
Inside each element the matrices A and B are approximated as constant and the plane wave basis (12) and
(18) for the solution and the trial function involve only simple exponential functions. Therefore the integrands
are exponentials. Thanks to the use of the adjoint problem for the trial functions the domain integral vanishes
and one is left with integrals of exponentials along the edges of the mesh. For any polyhedral mesh, these edges
are straight segments and it is straightforward to evaluate these integrals in closed form. This simplicity in the
implementation of the method is an advantage compared to standard polynomial-based discontinuous Galer-
kin methods which require numerical Gauss integration schemes (except for standard finite volume methods
which use constant interpolation), or other physics-based numerical methods (such as the Partition of Unity
Method which requires special integration schemes [32,33]).
4. Benchmark problem

To study the properties of the proposed numerical method, we consider the problem of a single plane wave
propagating in a uniform medium, see Fig. 3. This is very similar to performing a dispersion analysis of the
numerical model and the simplistic nature of this benchmark problem allows for a detailed analysis of the
properties of the numerical scheme (accuracy, conditioning and anisotropy). This benchmark problem has



Fig. 3. Left: Finite element mesh of the computational domain (228 triangles); Right: Example of solution for an acoustic wave.
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previously been used for several other numerical methods, for instance partition of unity methods [7,8] or dis-
continuous Galerkin methods with Lagrange multipliers [34,12].

The parameter of the problem are made non-dimensional, so we have c0 ¼ 1 and q0 ¼ 1. The mean flow is
uniform with direction a = 0 and Mach number M ¼ v0=c0 ¼ 0:5. The computational domain X is a 1 · 1
square meshed with unstructured triangular elements, see Fig. 3. Ghost cells are used on the boundary of
the computational domain in order to generate a single plane wave. This wave can be either an acoustic or
hydrodynamic disturbance and is obtained by defining g in Eq. (27) as
g ¼ G expðikh � xÞ;

where h is the direction of the plane wave and G and k are given by (13) for an acoustic wave and by (15) for a
vorticity wave.

To assess the accuracy of the computational scheme the numerical error E is defined as the L2 relative error
on the unknown vector u. That is
E ¼
ku� uexkL2ðXÞ

kuexkL2ðXÞ
;

where the exact solution is uex ¼ g. Since both the numerical solutions and the exact solution are made of plane
waves, this error can be evaluated in closed form using the integration technique described in [15, section
III.D].

4.1. Anisotropy

First consider the anisotropy of the model, that is the influence of the wave direction on the numerical
error. For acoustic waves, Fig. 4 shows the relative error plotted against the wave direction h for different
number of acoustic waves Na in the plane wave basis (and with no vorticity wave, Nh = 0). The frequency
is fixed x = 20 and the element size is h = 0.1. The relative error tends to increase when the wave propagates
against the flow and this is due to the Doppler effect introduced by the mean flow. The acoustic wavelength is
2p=k with k given by (13) and it can be seen that acoustic waves are shorter or longer in the upstream or down-
stream directions, respectively.

To show more clearly the effect of the plane wave basis a second set of results is presented in Fig. 4 where
the frequency is adjusted as the direction h is varied so as to remove the Doppler effect introduced by the mean
flow. In that way, the wavelength of the incident wave is independent of its direction and the number of ele-
ments per wavelength is held constant (we use 3 elements per wavelength in the present results). The error
observed is now solely a function of the angular distance between the direction of the incident wave and
the directions of the plane wave basis. The relative error decreases significantly when the wave direction is
close to one of the directions of the plane waves basis (in fact the error drops to zero as there is strictly no
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Fig. 4. Relative error versus the direction of the incident acoustic wave with Nh = 0 and Na = 8 (dot–dashed line), Na = 10 (dashed line),
Na = 12 (thin solid line) and Na = 14 (thick solid line). Left: the frequency is constant; Right: the wavelength is constant.

G. Gabard / Journal of Computational Physics 225 (2007) 1961–1984 1973
error when the h equals one of the directions of the plane wave basis). For instance, with 8 plane waves the
error is constantly below 1% with 3 elements per wavelength. Furthermore, increasing the number of plane
waves in the basis results in a significant reduction of the numerical error. For numerical methods based
on plane waves, it is well known that increasing the number of plane waves is much more efficient than
improving the mesh resolution (see Section 4.2).

The anisotropy for an incident vorticity wave is shown in Fig. 5 with x = 10 for different numbers of vor-
ticity plane waves in the basis. The relative error becomes quite large when the incident vorticity wave is
almost orthogonal to the mean flow (that is for h ¼ p=2 and h ¼ 3p=2). This is explained by noting that
the wavelength of the vorticity waves is 2p=k with k given by (15). As the wave direction becomes orthogonal
to the mean flow, the wavelength tends to zero and the number of elements per wavelength is tending to zero
as well. The large error observed for h ¼ p=2 and h ¼ 3p=2 is therefore not a defect of the present numerical
method but is due to the physics of the problem which render impossible the accurate resolution of vorticity
waves nearly orthogonal to the mean flow. In fact, this problem can be reproduced with other numerical
schemes for the linearized Euler equations (see for instance Fig. 11). As with acoustic waves, the numerical
error for the vorticity waves decreases notably when the incident waves direction is close to one of the waves
of the basis. Again increasing the number of plane waves yields a significant reduction of the relative error.
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Fig. 5. Relative error versus the direction of the incident vorticity wave with Na = 0 and Nh = 3 (dot–dashed line), Nh = 5 (dashed line),
Nh = 7 (thin solid line) and Nh = 9 (thick solid line).
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Although the large errors observed for h ¼ p=2 and h ¼ 3p=2 seems severe, in practice this is not important
because a large part of the vorticity is convected with the flow and the amount of vorticity propagating at large
angle is comparatively insignificant. For instance in turbulence modelling, the flow field is mainly composed of
vortical disturbances and can be decomposed as a sum of plane waves using Fourier analysis. The velocity
spectrum, which describes the amount of energy contained by the waves in each direction, decreases quickly
for waves which are not parallel to the mean flow [35] (the energy of the waves perpendicular to the flow are
indeed zero). This well-known behaviour of turbulent flows is embodied in the energy spectrums formulated
by von Kármán and Liepmann.

For both acoustic and vortical waves, the results with very low level of errors are partly altered by the pres-
ence of peaks. These are induced by the poor conditioning of the numerical model for very accurate solutions.
The issue of conditioning will be discussed in Section 4.3.

4.2. Convergence

We now consider the convergence of the model by plotting the accuracy against the mesh resolution which
is generally given by the number of points per wavelength. With standard finite element methods, the degrees
of freedom are generally the nodal values of the solutions and the number of degrees of freedom is directly
proportional to the number of nodes of the mesh. With discontinuous Galerkin methods, the situation is more
complicated since the degrees of freedom do not correspond to nodal values. It is therefore more convenient to
define a number of degrees of freedom per wavelength which better represents the ‘density’ of information
required to describe one wavelength k. For a L · L square computational domain, this is done by considering
a regular grid with ndof nodes. The node spacing on such a grid is given by L=ð ffiffiffiffiffiffiffiffindof

p � 1Þ and the correspond-
ing number of degrees of freedom per wavelength is kð ffiffiffiffiffiffiffiffindof

p � 1Þ=L.
As shown in the previous section the accuracy is significantly influenced by the direction of the wave with

respect to the flow and the plane wave basis. However, for realistic problems, the solution at any point in the
computational domain is likely to be composed of waves propagating in different directions and it is therefore
unrealistic to define the accuracy of the model in terms of one particular wave direction. From a practical
point of view, one should rather consider the worst case by choosing the incident wave direction which results
in the largest relative error. So we choose h ¼ 7p=8 for the incident acoustic wave and h ¼ 4p=11 for the vor-
ticity wave. This yields conservative yet reliable estimates of the accuracy of the method for realistic problems.

Fig. 6 shows the convergence for an acoustic incident wave with different numbers of plane waves. Increas-
ing the number of plane waves results in a significant increase of the rate of convergence. This is a well-known
100 101
10–7

10–6

10– 5

10–4

10–3

10–2

10–1

100

101

Elements per acoustic wavelength

R
el

at
iv

e 
er

ro
r

100 101 102
10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

101

Degrees of freedom per acoustic wavelength

R
el

at
iv

e 
er

ro
r

Fig. 6. Convergence for an incident acoustic waves with different number of acoustic plane waves in the basis. Relative error plotted
against the number of elements per acoustic wavelength (left) and against the number of degrees of freedom per acoustic wavelength
(right). Na = 6 (thick solid line), Na = 8 (thick dashed line), Na = 10 (thin solid line), Na = 12 (thin dashed line), Na = 14 (thin dot–dashed
line).
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property of numerical methods using plane waves (and more generally of spectral methods) that increasing the
number of basis functions is much more efficient than increasing the mesh resolution (in other words using
p-refinement is more efficient than h-refinement). For more information on this general aspect of spectral
methods see [7,8,36]. The rate of convergence with the number of plane waves is exponential while refining
the mesh yields only an algebraic convergence. By analyzing the convergence results for various number of
plane waves it is possible to infer that the rate of convergence of the numerical solution is the integer part
of ðNa � 1Þ=2. As an illustration of the accuracy of the method, it is noted that with 14 plane waves the relative
error falls below 1% with less than 5 degrees of freedom per wavelength or less than 0.8 element per wave-
length (when an element is larger than an acoustic wavelength!).

The convergence of the method for an incident vorticity wave is shown in Fig. 7. As for the acoustic wave,
the rate of convergence increases with the number of plane waves. By inspection of the numerical results it was
found that the rate of convergence is given by Nh � 1. With 9 plane waves, the error is below 1% with just 0.7
element per wavelength or 3 degrees of freedom per wavelength (note that in Fig. 7 the wavelength is the
hydrodynamic wavelength given by 2pv0 � h=x).

4.3. Conditioning

Wave-based numerical methods, such as PUFEM, UWVF and DEM, are known to suffer from a poor con-
ditioning. But the extent of the ill-conditioning varies for each method. For instance the discontinuous Galer-
kin method with Lagrange multipliers for the Helmholtz equation is known to exhibit a better conditioning
than the partition of unity method [12]. Also the ultra-weak variational formulation was found to be better
conditioned than the partition of unity and than the least square methods for Helmholtz problem [37].

Fig. 8 shows the condition number of the linear system for an acoustic incident wave with various numbers
of acoustic waves (note however that the condition number is independent of the nature of the incident wave
as it has no influence on the left-hand side of the algebraic equations). The condition number is plotted against
the number of elements per wavelength and the accuracy. The corresponding results for an incident vorticity
waves are shown in Fig. 9. It is observed that the growth rate of the condition number with the number of
elements per wavelength increases with the number of plane waves in the basis. With a large number of plane
waves, the condition number can quickly reach values as high as 1015. However, the situation is not as bleak as
it seems if one considers the condition number plotted against the relative error. It is observed that severely ill-
conditioned systems are only obtained for very high levels of accuracy with the relative error being approxi-
mately 10�5 or 10�6. Such a level of precision is generally excessive for practical calculations (for engineering
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Fig. 7. Convergence for an incident vorticity waves with different number of vorticity plane waves in the basis. Relative error plotted
against the number of elements per hydrodynamic wavelength (left) and against the number of degrees of freedom per hydrodynamic
wavelength (right). Nh = 3 (thick solid line), Nh = 5 (thin solid line), Nh = 7 (thin dashed line), Nh = 9 (thin dot–dashed line).
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Fig. 8. Condition number versus the number of element per acoustic wavelength (left) and versus the relative error (right) for an acoustic
incident wave. The plane wave basis is composed of acoustic plane waves with Na = 6 (thick solid line), Na = 8 (thick dashed line), Na = 10
(thin solid line), Na = 12 (thin dashed line), Na = 14 (thin dot–dashed line).
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Condition number

Fig. 9. Condition number versus the number of element per hydrodynamic wavelength (left) and versus the relative error (right) for an
hydrodynamic incident wave. The plane wave basis is composed of acoustic plane waves with Nh = 3 (thick solid line), Nh = 5 (thin solid
line), Nh = 7 (thin dashed line), Nh = 9 (thin dot–dashed line).
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purposes a relative error of the order of 1% is acceptable). Therefore in practice the conditioning of the
method is not critical.

These results clearly show that it is crucial to choose carefully the number of plane waves in order to control
the conditioning of the numerical model. Huttunen et al. devised an automated technique to choose the opti-
mal number of plane waves in each element so as to achieve a given condition number [18]. For instance, for a
mesh with a varying element size, this method will automatically allocate more plane waves to large elements
in order to accommodate for the reduced mesh resolution. It should be possible to adapt such a technique to
the discontinuous Galerkin method with plane waves, but this will not be pursued in the present paper.

Moreover it is possible to use pre-conditioners to improve the conditioning before solving the linear system.
A variety of pre-conditioning techniques have been developed and their performances can be quite dependent
on the particular problem at hand. For the UWVF for Helmholtz problems, Huttunen et al. have successfully
used a simple pre-conditioner [18]. The pre-conditioning matrix is block-diagonal with each block being copied
from the corresponding block in the global matrix. The inverse of the pre-conditioning matrix can be easily
computed by inverting each block separately and does not represent a significant overhead. To demonstrate that
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such a pre-conditioner can also be applied with the present numerical method, Fig. 10 shows the condition num-
ber of the global matrix before and after pre-conditioning both for acoustic waves and hydrodynamic waves. It
is clear that this simple pre-conditioner can reduce the condition number by several orders of magnitude and
that it can efficiently mitigate the conditioning issue of the wave-based discontinuous Galerkin methods.

4.4. Comparisons with finite difference schemes

In order to put the performance of the present numerical method in perspective with more standard com-
putational techniques for aeroacoustics, it is compared against the dispersion-relation-preserving scheme
which is a high-order finite difference method optimized to minimize the dispersion error in a range of wave-
number [26]. This is a very common method in computational aeroacoustics in particular to solve the linear-
ized Euler equations in the time domain. We consider the same simple benchmark problem as above. A regular
cartesian grid is used to discretize the computational domain for the finite difference solution. The spatial
derivatives in the conservation Eq. (2) are approximated using the 7-point DRP schemes.

The non-homogeneous radiation and outflow boundary conditions developed by Tam et al. are used to
generate the incoming plane wave inside the computational domain [38]. For the discontinuous Galerkin
method, the mesh shown in Fig. 3 is used and the plane wave basis is composed of 12 acoustic waves and
7 vortical waves. A 38 · 38 grid is used for the DRP schemes so that the two numerical models have exactly
the same number of degrees of freedom.

We first compare the anisotropy of the finite difference schemes with that of the wave-based discontinuous
Galerkin method, see Fig. 11. It is clear that for all wave directions the numerical error of the finite difference
solutions is at least one order of magnitude larger than that of the wave-based discontinuous Galerkin method
(and two orders of magnitude larger in some cases). To fix ideas, for an incident acoustic wave with h ¼ 3p=4
the DRP scheme has 7.4 points per wavelength and achieves an accuracy of 1.2%. With the wave-based dis-
continuous Galerkin method the numerical error is 0.03% with just 2 elements per wavelength. The results for
the vorticity wave are also shown in Fig. 11. The wave-based DG method is invariably more accurate than the
DRP scheme by at least one order of magnitude. It is interesting to note that the large numerical error already
observed in Section 4.1 for hydrodynamic waves propagating at large angles from the mean flow is also
observed with the finite-difference scheme.

Convergence results are shown in Fig. 12 with the same parameters as in Section 4.2. As for the discontinu-
ous Galerkin method, the grid of the finite difference solutions remains unchanged and the frequency is varied.
The finite difference scheme is found to be less efficient both for acoustic and vorticity waves. These results
demonstrate clearly that, for a given number of degrees of freedom, the discontinuous Galerkin method out-
performs the DRP finite difference scheme.
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Fig. 10. Influence of the pre-conditioner for hydrodynamic waves (left) and acoustic waves (right). Thin lines: no pre-conditioner; Thick
lines: with pre-conditioner. Left: Nh = 3 (solid line), Nh = 5 (dashed line), Nh = 7 (dot–dashed line). Right: Na = 6 (solid line), Na = 10
(dashed line), Na = 14 (dot–dashed line).
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Fig. 11. Anisotropy of the present method and the finite difference scheme. Left: acoustic wave with x = 20; Right: hydrodynamic wave
with x = 10. Thin lines: discontinuous Galerkin method with Na = 12 and Nh = 7. Thick lines: DRP scheme with a 38 · 38 grid.
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Fig. 12. Convergence of the present method and the finite difference scheme. Left: acoustic wave; Right: hydrodynamic wave. Thin lines:
discontinuous Galerkin method with Na = 12 and Nh = 7. Thick lines: DRP scheme with a 38 · 38 grid.
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5. Source terms and singular solutions

In the present method, source terms are represented by the right-hand side s in (2). With wave-based meth-
ods a particular issue arises for non-homogeneous equations since the plane waves are solutions of the homo-
geneous problem and one might question the ability of the plane wave basis to describe the solutions when
sources are present on the right-hand side of (2). For the partition of unity method, it was shown that in such
cases the numerical model is robust but exhibits a low order of convergence as the mesh resolution is increased
[8]. A first-order convergence is also observed for the ultra-weak variational formulation [16].

Furthermore, solving accurately Eq. (2) in the vicinity of a localized source can sometimes be difficult.
Several sources of practical interest such as electromagnetic or acoustic monopoles and dipoles generate
solutions that are singular and with large gradients in the region near the source. Although plane wave
bases form a consistent approximation of singular functions (i.e. the error between the best approximation
and the exact function decreases as the number of plane waves is increased), the convergence of the
numerical method is not guaranteed when the exact solution is singular. This is due to the fact that Galer-
kin formulations do not necessarily yield the approximate solutions that minimize the numerical error. For
more details on this aspect of wave-based numerical method, the reader is referred to [9,22,37]. A simple
way to improve the numerical solution is to increase significantly the mesh resolution in the vicinity of the
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source. As a consequence the number of plane waves per element in this region will be reduced in order to
control the conditioning of the problem. This method was used with the ultra-weak variational formula-
tion for Maxwell’s equations by Huttunen et al. in [21, Fig. 2] where a very fine mesh was used to rep-
resent an electromagnetic dipole. However, the downside is that it inevitably increases significantly the
problem size.

In an attempt to solve efficiently problems with point sources and singular solutions, a different method is
devised in this section by modifying the variational formulation and removing explicitly the singular part of
the solution.

5.1. Modified variational formulation

First we assume that the source s is contained within a particular element Xk (this is obviously the case for
any point sources as they can be described by the Dirac function and its derivatives). The coefficients in the
element Xk are uniform and we denote us the solution generated by the point source if it was in an infinite
uniform medium with the same coefficients as inside the element Xk.
�ixus þ Ak
ous

ox
þ Bk

ous

oy
¼ s; on R2: ð28Þ
By using the trial function vk for the element k the following weak variational formulation can be derived
Z
oXk

vT
k FkusdC ¼

Z
Xk

vT
k sdX: ð29Þ
It is therefore possible to substitute the singular source term in the right-hand side of Eq. (2) by an equiv-
alent flux across the contour of Xk.

We now have to remove the singularity of the solution. To that end, the solution uk inside the element Xk is
rewritten as uk þ us so that uk now represents the regular part of the solution in the element Xk, whereas for all
the other elements it still denotes the total solution. After the substitution the variational formulation (22) of
the problem reads
X
e

X
e0<e

Z
Ce;e0

ðve � ve0 ÞTðFþe;e0ue þ F�e;e0ue0 ÞdCþ
Z

oX
vTFudC ¼

X
e0<k

Z
Ck;e0

vT
k F�k;e0us þ vT

e0F
þ
k;e0usdC: ð30Þ
This is similar to formulation (22) except for the right-hand side where the original source term present
inside the element Xk has been transformed into an equivalent source distributed along the edge of the
element.

As the solution us is not a plane wave, the integral on the right-hand side cannot be evaluated in closed form
and numerical integration schemes have to be used, such as Gauss quadratures. But it does not represent a
significant overhead in computing time since it is only required for one element. This method can be readily
modified if Xk is on the boundary of the computational domain.

5.2. Application to an acoustic point source with a uniform flow

To illustrate the efficiency of the modified variational formulation (30), we solve the problem of a point
mass source embedded in a uniform flow where the source term in (2) is s ¼ ½1; 0; 0�Tdðx� xsÞdðy � ysÞ. This
problem is similar to the test cases used by Bailly and Juvé to benchmark finite difference methods for the lin-
earized Euler equations in the time domain [39].

The exact solution us to Eq. (28) can be obtained in closed form and is given in [39]. The ambient sound
speed and density are uniform, c0 = 1, q0 = 1. The mean flow is oriented in the positive x direction, with Mach
number M = 0.5 so u0 = M and v0 = 0. The angular frequency is x = 40. To represent the radiation of sound
to the far field, ghost cells are used on the boundary of the computational domain with a zero solution outside
the domain, i.e. g = 0 in Eq. (27). To reduce spurious reflections at the boundary, the computational domain is
circular with radius 1 and the point source is located at xs = �M and ys = 0 so that the radiating waves hit the
boundary at normal angle.
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First, Fig. 14 illustrates the advantage of the modified formulation (30) over (5). While the original varia-
tional formulation is clearly unable to resolve even qualitatively the sound radiation from the point source, the
solution based on the formulation (30) is quite accurate with the L2-error on the pressure field being just 1%. It
is noted that neither the mesh resolution nor the number of plane waves has been modified between the two
results given in Fig. 14 (in both cases the element size is 0.08 and the plane wave basis is composed of 14 acous-
tic waves and 5 hydrodynamic waves).

To assess the influence of the mesh size and number of plane waves, three different mesh resolutions were
considered (see Fig. 13) as well as a number of acoustic plane waves ranging from 8 to 14 (together with 5
vorticity waves). Shown in Fig. 15 are three examples of pressure profile along the x-axis. With the fine mesh
and only 8 acoustic waves, the numerical solution is reasonably accurate in the downstream region where the
acoustic wavelength is large but is unacceptable in the upstream direction where the acoustic wavelength is
significantly shorter. With a coarse mesh but 14 acoustic plane waves results clearly improve although the
amplitude is still slightly underestimated in the upstream region. And finally with the fine mesh and 14 acoustic
plane waves the numerical solution is found to be very accurate.

Table 1 summarizes the L2-error for pressure with the different combinations of mesh resolution and num-
ber of plane waves. As expected, the error decreases rapidly as the number of plane waves is increased. Com-
paratively, refining the mesh only yields limited improvement in accuracy. This is best illustrated by comparing
the case of the fine mesh with 8 plane waves and the case of the coarse mesh with 14 plane waves. With less
degrees of freedom the latter case achieves a much better accuracy with an error divided by 20. These results
are in line with the conclusions drawn in Section 4.
Fig. 13. Three triangular meshes with different resolutions. Left: element size 0.1, 765 elements; Center: element size 0.09, 980 elements;
Right: element size 0.08, 1221 elements.

Fig. 14. Numerical solution for a point mass source in a uniform mean flow, with the standard formulation (22) (left) and with the
modified formulation (30) (right).



Table 1
L2-error on pressure and number of degrees of freedom for the point mass source in a uniform flow with different mesh resolutions and
numbers of acoustic plane waves

Coarse mesh Intermediate mesh Fine mesh

Error (%) ndof Error (%) ndof Error (%) ndof

Na = 8 46 9945 37 12740 31 15873
Na = 10 18 11475 10.4 14700 7 18315
Na = 12 4.4 13005 2.5 16660 1.7 20757
Na = 14 1.5 14535 1.3 18620 1 23199
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Fig. 15. Pressure profile along the x-axis with different mesh resolutions and number of plane waves. Top left: fine mesh with 8 plane
waves; Top right: coarse mesh with 14 plane waves; Bottom: fine mesh with 14 plane waves. Exact solution (red), numerical solution (blue).
(For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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6. Application to non-uniform flows

We now consider a case where the base flow is not uniform by solving the problem of a point source embed-
ded in a two-dimensional cold jet. The configuration is the same as in Section 5.2 except that the flow velocity
has now a Gaussian profile



Fig. 1
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u0ðyÞ ¼ u1 þ ðujet � u1Þe� logð2Þðy=bÞ2 ;
where b is the width of the jet, u1 is the free stream velocity and ujet is the velocity on the centerline of the jet.
Here we choose the parameters u1 ¼ 0:2, ujet ¼ 0:5 and b = 0.14. The flow velocity profile is shown in Fig. 16.
This test case is similar to the benchmark problem for computational aeroacoustics devised by Agarwal et al.
[40] (although with different parameters).

For the numerical calculations, the fine mesh shown in Fig. 13 was used together with 14 acoustic waves
and 5 vorticity waves in each element. Fig. 16 shows the numerical solution for the real part of pressure.
The refraction of acoustic waves by the mean flow shear is clearly visible. The acoustic waves propagating
inside the jet are refracted in the transverse direction and this results in a region downstream of the source
where the sound amplitude is significantly smaller (this is the so-called ‘cone of silence’).

In Fig. 17, the numerical solution for pressure is compared against the analytical solution of Agarwal et al.
[40] along the line y = 0.5. It is found that the numerical result is in good agreement with the analytical solu-
tion. The slight difference observed is thought to originate mainly from spurious reflections at the boundary of
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Fig. 16. Left: velocity profile of the jet. Right: real part of pressure for the noise radiated by a point source in a jet.
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ces in colour in this figure legend, the reader is referred to the web version of this article.)
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the computational domain where ghost elements were used to implement a simple non-reflecting boundary
condition. Although the use of ghost elements to remove spurious reflection is not optimal, it is sufficient
to demonstrate that the present discontinuous Galerkin method is able to solve problems with non-uniform
flows. The development of efficient non-reflecting boundary conditions for the physics-based DGM will surely
improve the present results but this is beyond the scope of this paper.

Finally, it is worth noting that the results shown in Figs. 16 and 17 required approximately one minute on a
standard desktop PC and less than 25000 degrees of freedom.

7. Conclusion

The general discontinuous Galerkin method presented in this paper relies on plane waves to approximate
the solution instead of polynomials. This method can yield very accurate results even with a small number of
degrees of freedom. The efficiency of this method stems from the fact that the dispersion relation of the con-
tinuous problem is used consistently throughout the formulation of the numerical scheme: it is used to define
the plane wave basis for the solution and the trial function, it is also central to the formulation of the upwind
flux splitting method.

This discontinuous Galerkin method was applied to the linearized Euler equations to solve aeroacoustic
propagation problems. It can be applied to other linear wave propagation problems that can be formulated
as a set of conservation equations of the form (2).

In the results presented here the number of plane waves was chosen manually and was the same for all the
elements. To improve the efficiency and flexibility of the method it will be necessary to devise an automated
procedure to define the number of plane waves based on the element size, the frequency and the parameters.
Huttunen et al. have developed such a method for the ultra-weak variational formulation for the Helmholtz
equation [18] whereby the number of plane waves is adjusted to keep the conditioning of the model below a
prescribed level. Another important aspect to develop for the discontinuous Galerkin method with plane
waves is the use of efficient non-reflecting boundary conditions. An extension to the isentropic linearized Euler
equations is also possible and this will involve the use of entropy waves in addition to the acoustic and vor-
ticity waves. Finally, the use of a constant interpolation for the coefficients of the equations introduces an
additional source of error when solving problems with non-uniform coefficients. This source of error will
be assessed in future work.
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